Live Perspective: A New Approach to Depth in Drawing

Final product image
What You’ll Be Creating

Perspective. The word freezes the blood in the veins of every
aspiring artist (and even many of those who seem to be pretty good
at what they do). This “method of drawing 3D forms in 2D space” is full
of confusing mathematical rules that seem to have nothing to do with
carefree, passionate drawing. Even if you manage to grasp these rules,
you might still wonder how they apply to the real world. When you look
around, do you see one-point perspective or two-point perspective? If
the horizon is always at eye level, what happens when you look down?
What actually are vanishing points? And can you forget about
perspective as long as you don’t draw architecture?

In this
article I won’t explain all the rules of modifying an object in linear
perspective. There are a lot of tutorials about it, so you can look them up. Instead,
I’ll explain to you where these rules come from and why someone
needed to invent them. The rules, after all, are only a way of describing a
fascinating phenomenon, one present in nature since the day our brains
started to process the signals from our eyes. After reading this article, your world will never be the same!

Perspective… So, What, Actually?

Forget
about math and geometry. Go back in time and remember those days when
you were traveling and observing the buildings and objects moving with
you. Those closest to you were moving the fastest, and these in the
background were scarcely changing position. And the furthest of them, the moon, wasn’t moving at all—it was, and still is, always there, no matter
where you go.

But, of course, it was very silly of you to think
the objects actually moved when you did. It was just an illusion, like how your monitor or a table looks skewed when you look at it from the side. Of course, it’s a rectangle, so it’s only an illusion. We’re so
used to these illusions that we don’t see them any more, and if a child
asks why the buildings move, or why a table is so skewed, for a
while we may even not understand what they’re talking about.

what is pespective illusion or reality
We tend to see 2 as a true shape, while 1 and 3 are just illusions created by perspective

“Illusion”
is a word we use to explain things that our brain makes us believe in,
although they’re not real. A table looks skewed. A building looks as if
it’s moving. The problem is that everything about looking is an illusion!
Colors, position, length, width, height, rotation, even texture don’t exist in the way we
see them. The image in our head is just an interpretation of reality—an
interpretation irrevocably relative to us.

Size

How big is this object? Can you really tell?

perspective size 1

Let’s add something else to the scene. Now it’s a small square, right?

perspective size 2

Or… maybe it’s huge.

perspective size 3

Size doesn’t exist without a relation.
Nothing is big or small by itself—you need to compare it to something
to define the size. Usually, we use a “default” size of something as a
reference (a big apple is bigger than most of the apples you’ve seen).

Position

But where is our square? Is it far or is it close?

perspective position 1

It looks far now…

perspective position 2

But it may be close, too.

perspective position 3

Is it high?

perspective position 4

Or maybe low?

perspective position 5

An object isn’t anywhere until you define a reference point. You need to create a relation between x and y to say where x is. Unintuitive? Keep on reading. I’ll explain it all later.

Motion

Does this square move? Probably not, right?

perspective motion 1

Wait… Did I see something?

perspective motion 2

But…
what’s really moving here? The pink square or the ghost in the background?
We will never know! And even in the first picture the white background
may be sliding all the time, but you won’t notice the movement until
something changes in the picture.

You can tell whether something is moving by comparing it to another thing that isn’t moving.
The change of distance between them is the way you measure the speed.
People used to believe that the Sun revolved around the Earth, and now we believe
it’s the opposite. The truth is neither of those is true—or they both
are.

What Is True?

All these examples have one thing in common: a relation must occur for them to exist. Perspective is just a name for a relation between the observer and other objects. See? No math at all.

You may think, “But objects are
somewhere just like that, they
don’t wait for us to tell them they are there!” It may look
unintuitive, but there are a lot of expressions created by humans in
relation to us:

  • If I need to move a lot to reach it, it’s far.
  • If my arms get tired quickly when I carry it, it’s heavy.
  • If I barely feel it in my hand, it’s light.
  • If it burns when touched by me, it’s hot.

They can be easily translated to a simple pseudo code:

If (distance(my.position,x)) > 100*my.steps 
then x=far; else x=close;

If (weight(x)) > my.strength 
then x=heavy; else x=light;

If (temperature(x)) > my.temperature 
then x=hot; 
else if (temperature(x)) == my.temperature 
then x=normal;
else x=cold;

If (size(x)) > my.remembered_size_of_x 
then x=big; 
else if (size(x)) == my.remembered_size_of_x 
then x=normal;
else x=small;

Depending on what “me” you use, the actual result
will be different. For most humans they will be similar, but you can be a
strongman and call a fridge “light”—and you won’t be wrong when saying
it! What we call “true” is just a set of properties that the majority of
humans would agree with. A fridge is heavy, because most people would
have problems lifting it—not because it’s heavy by itself.

What’s
interesting is that the expressions “far”, “close”, “big”, “small”, “heavy”,
“light”, etc., change their meaning all the time depending on the
variables. A remote control is far away from you when you need to get up
to switch the channel (let’s say, 3 meters), but at the same time a
restaurant on the next street (300 meters) is close to you.

It
may look like philosophy to you, something conceptual, one of many ways
to describe reality. The fact is that all these things—size, position,
distance, motion—are nothing but concepts. Imagine you’re a kind of
god and suddenly you can observe a world without it all! In fact, you
can’t imagine it—when trying, you’re most likely “flying out of your
body”, but still being and observing everything from one point.
We are our own references, and it’s impossible—at least for a mentally
healthy, sober person—to imagine the universe without any reference point. What’s more, “feel”, “touch”, “observe”, and other expressions like these imply
an analyzing tool and analyzed object. We can’t, in any way, sense
objects without using us as a reference—as long as we are humans, we can’t know what anything really is.
Math is the closest we can get to its image, but the more accurate
and complete it gets, the less people are able to understand it.

Every Sense Has Its Own Perspective

More
specifically, perspective is a relation between a certain sense of a
particular person and an object. Every sense may have a different
perspective. That’s where illusions come from—if an image received by
one sense doesn’t match the others (or our knowledge about it), we say
it’s not true. You can check it by closing your eyes in a small room
with white walls. Spread your arms and you’ll be surprised how tiny it became!

We use vision as the most important sense, so we tend to
imagine that reality is just like what we see. The world of darkness, when our
eyes stay closed, is a different world that we like to call incomplete.
The fact is that what we see is incomplete too—our eyes and brain process
only a small fraction of all visual signals available. We live in a reality that exists only for us,
and is similar—but not necessarily identical—among humans. We don’t
know what the world looks like. It’s being rendered right in front
of you with every move of your head
. That’s why objects around you
change form when you move—it’s not an illusion, they really do. Shapes and forms exist only in your head, as an interpretation of certain
information processed by your brain. There’s no “true” form, one not created by your brain. All of them—straight and skewed—are the same. Either you call them all illusions, or they’re all true.

perspective illusion
We all receive the same information from the object, but it’s the way we process it that makes the image in our head.

What
does it all have to do with art? And where is perspective, the one
sketched with clean lines and vanishing points, in all of this?

Perspective Makes the Image

I
hope I didn’t bore you with this lengthy explanation, but I think it’s
crucial to truly understand what I’ll say next. As an artist you create
an optical illusion—you use lines and patches of pigment to make people
believe they’re looking at something they know from reality. This illusion
needs to take into account every single vision mechanism we know to be complete. You can’t draw a bowl of apples, because, as we know now, we have no idea what it really is. You draw a seen bowl of apples—seen by someone’s eyes.

This
is where it all begins. When you draw from a reference—be it a photo or
reality—you simply copy the image you see in your head. That’s why
it’s relatively easy to achieve amazing results from this—you only need
good manual skills and hand-eye coordination, both simple to learn.

Most people see
this process as “copying reality”. Again, it’s impossible to create a
copy of a bowl of apples with your brush (A). You can only create a
visual copy (3) of the image created in your mind (2) when looking at
the bowl of apples (1).

perspective what we see is not real

We’re
getting closer to the actual meaning of perspective now. The position of
the observer, the distance between their eyes and the object, the health
condition of their eyes, and the mental health of the observer all
create the seen image. There are two important conclusions:

  • The image of an object is an interpretation of one’s brain.
  • The same brain will create a countless number of different images of the same object when the position of the eyes changes.

Now, to the point. When looking at a picture, you don’t see the pictured object (A)—you
see a brain image you’d create if you were looking at the object from
one strict position, angle, in certain light and brain conditions
(B).

perspective point of view 1

If
you’re confused, look at the illustration below. When looking at a
picture, you imagine yourself as the observer. In your mind you
reconstruct the conditions and position, and then you’re able to imagine
the object as a whole.

perspective point of view 2

A
set of variables of the observer (position, the angle and range of view, etc.) in relation to the environment is the meaning of perspective we
use as artists.

How Does Perspective Influence the Look of an Object?

It’s still quite confusing, isn’t it? Let’s learn some more about depth.

How
is it possible you can see 3D in a 2D picture? The same way you can see
depth with only one eye! In fact, binocular vision is the most useful
at a very short range—you can use it to thread a needle or do some other
precise tasks. For other cases, like distinguishing “close” from “far”, we use our observations from the past. We know how big an apple is when
we hold it in our hand, so when it’s much smaller than this, it must be far. For a complete image, we also use eye accommodation, comparison, and
light and shadow.

The observer has only one eye, as long as we
don’t have the technology to draw 3D pictures in an easily accessible
way. But it doesn’t really matter! When you see a 3D model on your
screen, it’s 2D. The illusion of depth is made when you start to rotate
it. The same trick is used when you’ve got one eye—you move your head to
change the perspective and suddenly depth is created. Why? Because 2D pictures have only one perspective. If you can easily switch between at least two of them along some common dimension, it becomes 3D for your mind.
It’s because in a 2D scene, an object can only move up-down and
left-right, or across. When it moves in some other direction—towards or
away from you—another dimension is added. This third dimension is depth.

perspective three dimensions in 2d

But
why do some drawings look 3D, when they’ve all got only one
perspective? It’s because some perspectives suggest the existence of other
perspectives. You look at them and it’s very easy for your brain to
imagine what would happen if the observer moved. Others don’t give
any hint about additional perspectives, so it’s impossible for us to imagine
them properly. If you’ve ever wondered why it’s so easy to draw one side
of the character, and so hard to make it more dynamic, here’s the
answer:

There are perspectives that convey only two
dimensions. Let’s call them 2D perspectives. Since a sheet of paper is
2D too (at least from our perspective…), conveying only two
dimensions on it is very intuitive. However, you can’t get round the
third dimension and expect it still to be readable! Drawing in a 2D
perspective inevitably leads to a flat picture—something that maybe has a
third dimension, but we can’t know anything about it, so we assume it doesn’t have any.

perspective three dimensional
A—all
the three images convey only two dimensions, ignoring the third one.
Each one of them looks flat because of it; B—the image conveys all three
dimensions and hence looks 3D

2D perspective, as I call it, is known in technical drawing as orthographic projection.
By drawing at least two sides of the object we’re able to determine how
it’s going to look in 3D. However, none of the projections is a default perspective—because there’s no such thing as a default perspective. Again, as humans, we have no sense that would let us “process” a whole object. For us, every object is made up of countless perspectives—and we can only see one at a time.

true default perspective
None of these perspectives is default and true. No, not even that “square”.

So, here’s the problem—you can’t draw something without any perspective. It would be like trying to draw an object as seen by nobody!
Therefore, every time you draw something, you convey some kind of
perspective—no matter if you know what you’re doing or not.
Unfortunately, when you try to learn something about perspective, you
stumble upon a technical approach with a bunch of weird, stiff rules.
Here’s how you draw horizon, here’s a vanishing point, one, two, three
of them, right angles, walls, repeatable shapes, order… You look at
it, you learn it, but you can’t see any relation to what you draw for
fun. Eventually, you decide it doesn’t, indeed, have anything to do with
your hobby, and you can ignore it. 

I’ve been there, too. But
let’s say it once again: an image is created when it’s seen. When
something is seen, a perspective is created automatically. Therefore,
perspective is sewn into everything you draw. You can either learn it or not—but there’s no way to avoid it.

wrong perspective how to fix

Cheer
up! Luckily, it’s not so hard to learn. After all, you’ve been doing it
intuitively for years! You just need to organize your knowledge—then
you won’t need to guess any more. Perspective will work for you!

wrong perspective
This is the effect of treating one certain perspective as a “true form” of an object

How Does Perspective Work?

Finally,
the part we’ve all been waiting for! We’ve already clarified that
perspective is a crucial part of every drawing, not only technical ones.
But where does it come from? How is a single perspective created? How
and when does 2D perspective transform into 3D? And why do 3D objects on a 2D picture look distorted?

Open your mind—this is something you might never have thought about. It will be counter-intuitive, because you’ve been using Euclidean geometry all your life, and, as we’re going to learn soon, vision doesn’t work that way. It’s not easy to jump from one way of thinking to another after all these years, but it’s certainly worth it!

Three Dimensions

Let’s start with the explanation of dimensions. You may know 2D is flat and 3D is…well, 3D, but how does it work? What’s the difference between flat and three-dimensional objects?

Let’s start with a probably shocking fact—objects aren’t 2D, or 3D, or 5D—they’re only immersed in dimensions and are perceived by us as a complete image made by parts from every dimension. That’s why a cube can be a square, a square can be a line, and a line can be a point. We call an object “3D” if it exists in a third dimension as something more than a point.

Two Dimensions

It doesn’t matter what we call the dimensions. What matters is that for us there are three of them. Let’s start with two dimensions.

This is a 2D sheet, right? We know it well. It has width and height, and that’s all we need to draw anything flat.

perspective one dimension

Actually, no. Two individual dimensions don’t give us anything as long as they’re separate. A line has a full length in the dimension only when it’s parallel to it. In other cases it’s shorter, and when it’s perpendicular, it becomes a point! Not to mention how lines lying in a perpendicular row become one.

perspective one dimension 2
perspective one dimension 3
From the point of view of individual dimensions, all these lines are totally different

To create a real 2D space we need to add the second dimension to every point of first dimension…

from 1d to 2d

…and the first dimension to every point of second dimension.

from 1d to 2d 2

It may look like a mess, but now we’ve created a space shared by two dimensions. Now, no matter where the line goes, it will be registered by both dimensions. We’re able to determine the length of the line even if it isn’t parallel to any dimension!

2 dimensions how to make

For example, when a line isn’t parallel to any dimension, the final image is created by merging a fraction of information from every dimension it has crossed.

2 dimensions lines

The Mysterious Third Dimension

In 2D space we can go left, right, up, down, and everywhere in between. However, there’s no “forward” and “away”, no “close” and “distant” here. Distance will be our third dimension—when you move one 2D sheet under or over another, depth is created.

how depth is created where depth come from

To create 2D space, for every point of one dimension we added another dimension. It’s the same with 3D space—for every point of third dimension we need to add a slice of 2D space.

However, both a sheet of paper and your screen are 2D. We can’t picture the third dimension here! The illustration below is just a concept, not a reflection of reality.

how depth is created where depth come from 2

If we want to draw a line just as it looks in one dimension, no problem. The same with two dimensions. But that’s where it ends—we can only draw two dimensions at the same time on a 2D sheet. When we want to add the third one, it will squeeze to 2D space—the lines will be distorted, just like when we wanted to picture a 2D line in a single dimension.

how depth is created where depth come from 3
We can only draw two undistorted dimensions in a 2D space

It’s also important to notice that there isn’t any particular side of the object that is “third dimension”. Now, when you can easily slide between three dimensions, with simple rotation a front side can become a back side, and the top may become the bottom. All the dimensions register the object, but the object isn’t part of them.

how depth is created where depth come from 4

An interesting fact is that we could add more dimensions—one 3D space for every point of fourth dimension and so on. It’s very simple in math, but we humans perceive only three dimensions, and any more are nearly impossible to imagine. That’s good for us—three dimensions are hard enough to grasp in art!

Human Field of Vision (FOV)

Our eyes aren’t the most perfect of all the animals; they’re actually pretty bad. Although with both eyes we have about 120 degrees field of vision, only in area 1 we can see sharp details and colors. In area 2, colors and blurry shapes are all that’s left, and area 3 is mainly used to see motion only. However, our brain fills in gaps and we believe the image in our head is as good as a photo—with colorful, sharp details in every point. It also persuades us there’s no blurry, double nose right in the center of our vision.

perspective human field of vision

Our FOV cone is made of an infinite number of 2D (horizontal and vertical) planes placed along a line (distance—depth) between the eye and infinity. For our convenience, we’re going to call the 2D planes frames. The second cone is what we usually imagine it to be, but it’s closer in look to a camera’s FOV than ours.

perspective human field of vision horizontal vertical
The illustration shows clearly how the third dimension links the others
perspective human field of vision cone curvilinear convex
The first cone is what we really see. The second—what we believe we see

That’s right—there are no “corners” of vision. We look around, not along vertical and horizontal lines.

perspective human field of vision corners of vision

Why a rectangle, then? Probably because it’s a regular shape, easy to create as a painting canvas or a data array. It has nothing to do with our vision; it’s just practical to use elsewhere.

Here’s a symbolic interpretation of a FOV in the simplest configuration (only one eye used, we don’t need more).

  1. Glasses: I used them to show you where your eye is.
  2. Nose: it’s always there, but your brain tells you it isn’t.
  3. Sky: in this area everything is above your head.
  4. It’s the area of your height.
  5. Ground: place objects here for them to stand steadily.
  6. Underground: if there’s a hole in the ground, or the ground is actually water, you can make a good use of this area.
  7. The edge of your upper eyelid.
  8. The edge of your lower eyelid.
  9. Certain distance between the eye and the ground.
perspective human field of vision illustration simmulation

It’s important to remember where the level of the ground is. If you’re using a human as the observer, imagine a person talking to them eye to eye, with the face covering a big part of the frame. Where would they stand? That’s where the ground should be.

perspective human field of vision ground level

You don’t need to use the whole FOV for your picture. You can crop it however you want, rotating the horizon for a feeling of lost balance and placing the center away from the middle. Feel free to experiment with it!

perspective human field of vision crop frame rectangular

Scale

The most characteristic feature of perspective, objects getting smaller with distance, can be easily explained with the FOV cone.

While the cone gets wider with distance, the size of every frame stays the same for our brain. When you look at something very close to you, you don’t see that your field of view suddenly got smaller—you only notice that the object got bigger in comparison to it. Objects don’t change when getting closer or farther, they only land on different frames. The bigger the frame, the smaller the object seems in comparison. That’s why you can cover the whole world with a hand—at one point it’s indeed able to cover the rest of the cone.

perspective human field of vision scale why objects smaller distance
Three lines of this size can fit on frame A, while on frame B it’s five. For our brain both frames, A and B, are the same length. For the five lines to fit frame B, they need to appear smaller than on frame A.

Scale has to do with the perceived speed of objects. The farther the object, the longer the perceived way between both sides. Just compare a length of three cars in a row and a dozen big buildings—and they’re both squeezed into a line of the same length.

It also explains why the back side of a cube seems to move at a different speed than the front—they’re both on different frames!

perspective human field of vision scale why objects faster distance
The line on B needs more time to get to the border of our vision

Because of what we’ve just described, eventual changes are the most conspicuous in the narrowest part of the cone. Right in front of your eyes an apple can cover the whole world, but with distance it becomes less and less significant. That’s why we can usually ignore the motion of eyeballs and assume that the FOV cone starts in the front of our head—and you can freely rotate your eyeballs when keeping your head still without changing the perspective. 

Default Size

Now we know why the size of an object changes with distance. But
how can we determine the “default” size? At what point does the object
look as big as it really is? If you’ve been reading carefully, you
should know the answer—there’s no such thing as a “real size”. When you
measure something with a ruler, you compare it to a model size of 1cm—a
model that changes with distance too, so it’s not constant for your
eyes. There’s no way to measure an object changing in perspective.

However,
there’s a trick our eyes use to overcome this inconvenience. The first
clue to estimate the size is to notice how big a part of the frame it
takes.

perspective how to tell size

We’ve
already noticed that even big objects get smaller with distance. How can we tell a big, distant object from a close, small one, then? We need some
kind of depth indicator, which is what our eyes use when the distance is too big for the binocularity to be useful.

Experience

This
is the most basic one. You know that a building is big enough to store
you inside, so when it looks too small for it, it must be far.

perspective how to tell size 2

Comparison

Since the frames’ size changes regularly, we can use proportions to estimate the
size. It means that everything inside one frame will get smaller
according to some kind of a factor that you can use in your equation to
come back to the primary outcome. That’s why we often use a human
silhouette somewhere in the scene to stress the size of it. You can also
use other well-known objects, like trees or mountains (when they’re
small in comparison to the main object, it must be huge), or grass (when
it’s huge, the main objects must be tiny).

perspective how to tell size 3

Depth of Field

When
using shallow DOF you’re able to separate close objects from distant
ones. An easy trick is to draw some negligible objects just in front of
the observer and blur them, to show the distance between the observer
and the scene. Even if you don’t want to use blur, the areas out of
focus should be less detailed.

perspective how to tell size 4

Overlapping

One
object can cover another only when it’s closer to us than it. It speaks
a lot about distance and it’s the simplest, most intuitive method for
creating depth.

perspective how to tell size 5

Atmospheric Perspective

You can read more about it in my other article, but
here’s the point: The further something is, the more the color of the sky
is being scattered between you and that object. It doesn’t work when the
air is very clear, but in most cases a bluer, lighter object = a distant
object.

perspective how to tell size 6

By mixing
all these tricks you’re able to achieve the same kind of depth monocular
people observe. There’s also a cool experiment to see how good your
brain is at recreating depth from a 2D picture. Find a big, good-quality
photo (it may be on the screen), close one eye and make a “telescope”
out of your hand. Look through it at the photo, to see only the image
and nothing else. There’s a good chance you’ll see it in 3D!

Distortions

If you looked carefully at our cone, you should notice an odd thing. The 2D planes aren’t really flat—they’re like shallow bowls. It means they’re spherical like the Earth, and just as we can’t create a perfect, undistorted 2D map, we can’t create a 2D frame without distortion.

The illustration below shows clearly that the line, although perpendicular to the sight line, lands on separate frames. As we know, the farther the frame, the smaller the object—so a part of the line will become smaller, making the line shorter and turned away from us!

perspective why 3d distorted skewed

To obtain a possibly undistorted image, the object needs to be placed
right in the center of the FOV cone, with all its sides perpendicular to the sight line.
It’s impossible in the case of 3D objects—that’s why they’ll always look
distorted.

perspective why 3d distorted skewed 2
1—the line is perpendicular to the sight line, so it’s perceived as straight, with its full length; 2—the lines are parallel to the sight line, so they appear as points; 3—the line lies in the “shadow” of the first line, so it’s not observed at all

By the way, a camera lens catches this distortion too, but it’s usually undesired and cropped by the sensor. Wide-angle lenses accept part of this distortion, while fish-eye lenses take it all. In fact, our eyes work as fish-eye lenses—that’s our brain that tells us we’re seeing straight lines! Don’t believe me? I’ll explain it better soon.

Let’s see how it works. When we want to see another side of the cube, we need to rotate it. However, at the same time the perpendicularity of the first one is being lost—both sides are sliced across multiple frames on a different distance (depth). Therefore, part of them looks shorter and more distant—they look rotated.

perspective why 3d distorted skewed 3

That’s the first mystery solved. But is there any way to foresee the distortion without drawing a 2D view with all these curves first?

First you need to remember we’ve got two horizons—horizontal and vertical. We’re so familiar with the horizontal horizon that we don’t even notice the other one. But of course, that doesn’t stop it from existing!

perspective vertical horizon
1—horizontal horizon; 2—vertical horizon

Both horizons cross right in the center, at the point you’re looking at. You can move along the horizon, up and down, which is the same as sliding left and right. For now let’s assume that left and right refers to the horizontal horizon, and up and down refers to the vertical one.

perspective vertical horizon 2

You can also move across, for example sliding up one horizon and left on the other.

perspective vertical horizon 3

The center area looks the closest to us. It’s also the least distorted area. That’s why it’s used as a full frame and a base for linear perspective. However, this approach doesn’t explain why the lines bend!

perspective straight lines frame

Remember that the image in your head is spherical; your brain only persuades you it is completely straight. When focusing on a small area in the center (A) the bending isn’t that noticeable, but on a bigger scale it’s crucial for a proper 3D look. Take a good look at the illustration below.

perspective curvilinear spherical

Imagine a row of cubes standing along the horizon, parallel to your eyes. The one at point A will look the closest to you, while the others will be observed as receding.

perspective curvilinear spherical
1—”true” line; 2—observed line

Why? It’s the same distortion we were talking about earlier. Let’s talk about the front sides of these cubes. Both points A lie on the same frame, so they’re perceived from the same distance. However, between points B and C there’s a difference in depth. For points E and D this difference is huge!

perspective curvilinear spherical distance farther

If you’re still wondering how it’s possible that we get a convex image on a concave frame of the cone, here’s the answer:

perspective curvilinear spherical distance farther 2
When you rotate the view, it’s obvious that B is farther from us than A

The ultimate conclusion of all of this is the illustration below. The best and simplest lesson of perspective you can get is:

The higher the object over* the horizon, the more of its bottom** and the less of its front is visible

You can now create analogous situations to this, with “*below” and “**top”, or with “*to the left of” and “**right”, etc. Just make the pairs of opposite sides and it will work! An addition to this lesson is:

The farther the line from the center, the shorter

perspective spherical distance view tutorial

That would be all. What? Too simple? Where are the vanishing points and all…? If you really want to know, here’s the answer:

The Flaws of Linear Perspective

Linear perspective is a simplification of everything we’ve been talking about. Let’s see how it’s possible.

0-Point Perspective

In this perspective all the straight lines are parallel or perpendicular to each other. They don’t converge at any point. This is the perspective we can observe when looking at the center area of our FOV, when the object stands in front of us.

0 zero point perspective why is real

1-Point Perspective

In this perspective all the lines that aren’t parallel or perpendicular to each other converge at one point on the horizon. This is an effect similar to that observed in the center area, except in reality a slight distortion will occur. The objects need to stand perpendicularly to the sight line for this.

1 one point perspective why is real

2-Point Perspective

In this perspective there are two points on the horizon where all the lines that are not parallel to each other converge. We can observe this effect when expanding the center area. Here the objects are allowed to be rotated.

2 two point perspective why is real

3-Point Perspective

In this perspective there are no parallel or perpendicular lines. They all converge to one of the two points on the horizon or to the third point on the vertical horizon. This effect can be observed when looking peripherally, especially up/down (e.g. observing a high building). Rotation is welcome.

3 three point perspective why is real

Why Is It So Hard to Use?

There are two main reasons why linear perspective looks so counter-intuitive and stops you from spontaneous drawing.

First, the vanishing points aren’t about the position of the observer, but the objects in relation to them. Every object introduces its own vanishing points, so it’s easiest to put them all in rows, so that they share the same VPs. If you prepare a single perspective grid and surrender all the objects to it, you’ll get a stiff, man-made space—and lose control over the composition. On the other hand, the more vanishing points, the more chaos and work for you.

linear perspective vanishing points top view
A—0p; B—1p; C—2p; D—3p

Second, only objects constructed by humans tend to be regular enough to put lines on them. Organic things, like live creatures, come under perspective just like everything else, but they’re too dynamic to fetter them with stiff lines. That’s why using linear perspective for live things kills their spirit. How often does a lion stand straight, with its side perpendicular to you?

linear perspective organic living things animals non architecture
Imagine trying to use linear perspective on the second, more interesting shape!

Conclusion

I agree, perspective isn’t the easiest topic—but what is? If you want to be a great artist, there’s no way to avoid things like this. If you haven’t understood it yet, take your time, split it into parts and study them carefully. I strongly believe it’s the base of everything about re-creating reality. Yes, it’s hard—but believe me, after this, everything’s easy!

Perspective lets you draw a world seen from horseback, or dragonback,
with the eyes of a tiny worm or a flying bird. It creates dynamism, motion, life. It turns a stiff frame into a vivid memory. If you want to breathe life into your
pictures, stop thinking only about the pictured objects and focus on the
observer too. Without them there would be no picture!

The first rule of linear perspective is: learn it so that you can discard it. I hope that after this lesson you don’t feel like discarding anything—this is knowledge that will give you artistic freedom while obeying the rules of vision. Keep linear perspective for buildings and room plans—for everything else you just need to understand what’s going on in your picture. You’ve just taken a great step towards being awesome!

{excerpt}
Read More

Leave a Reply

Your email address will not be published. Required fields are marked *